
1pykc – 19 Jan 2024 A brief tutorial on Matlab

A short tutorial on
Matlab

Peter Cheung
Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

2pykc – 19 Jan 2024 A brief tutorial on Matlab

Introduction to MATLAB

◆ MATLAB is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-
use environment. Typical uses include:
• Math and computation

• Algorithm development
• Modeling, simulation, and prototyping

• Data analysis, exploration, and visualization

• Scientific and engineering graphics

◆ MATLAB is an interactive system whose basic data element is an
array that does not require dimensioning. This allows you to solve
many technical computing problems, especially those with matrix and
vector formulations, in a fraction of the time it would take to write a
program in a scalar non-interactive language such as C or Fortran.

3pykc – 19 Jan 2024 A brief tutorial on Matlab

Five Parts of Matlab

◆ The MATLAB language
❖ High-level matrix/array language with control flow statements, functions, data

structures, input/output, and object-oriented programming features

◆ The MATLAB working environment
❖ Facilities for managing the variables and importing and exporting data
❖ Tools for developing, managing, debugging, and profiling M-files

◆ Handle Graphics
❖ Two-dimensional and three-dimensional data visualization, image

processing, animation, and presentation graphics
❖ Graphical User Interface functions

◆ The MATLAB mathematical function library
◆ The MATLAB Application Program Interface (API)

❖ Allows you to write C and Fortran programs that interact with MATLAB

4pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (1) - Magic Square

◆ Engraving by Albrecht D�rer,
German artist and mathematician
in 1514.

5pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (2) - Method 1:Direct entry

◆ 4 ways of entering matrices in MATLAB:
• Enter an explicit list of elements
• Load matrices from external data files
• Generate matrices using built-in functions
• Create matrices with your own functions in M-files

◆ Rules of entering matrices:
• Separate the elements of a row with blanks or commas
• Use a semicolon “;“ to indicate the end of each row
• Surround the entire list of elements with square brackets, []

◆ To enter Dürer's matrix, simply type:
» A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

◆ MATLAB displays the matrix you just entered,
A =

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

No need to define
or declare size of A

6pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (3) - as lists

◆ Why is this a magic square? Try this in Matlab :-
» sum(A)

ans =

34 34 34 34

» A’
ans =

16 5 9 4
3 10 6 15
2 11 7 14
13 8 12 1

» sum(A’)’
ans = 34

34
34
34

Compute the sum
of each column

in A

Result in row
vector variable

ans

Transpose
matrix A

Result in cloumn
vector variable

ans

Compute the sum
of each row

in A

7pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (4) - subscripts

◆ A(i,j) refers to element in row i and column j of A :-

» A(4,2)

ans = 15

» A(1,4) + A(2,4) + A(3,4) + A(4,4)

ans = 34

» X = A;

» X(4,5) = 17
X =

16 3 2 13 0
5 10 11 8 0
9 6 7 12 0
4 15 14 1 17

row col
Slow way of finding

sum of column 4

Make another copy
of A in X

‘;’ suppress output

Add one element in
column 5, auto
increase size of

matrix

8pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (5) - colon : Operator

» 1:10
ans = 1 2 3 4 5 6 7 8 9 10
» 100:-7:50
ans = 100 93 86 79 72 65 58 51
» 0:pi/4:pi
ans = 0 0.7854 1.5708 2.3562 3.1416

» A(1:k,j);
» sum(A(1:4,4))

ans = 34

» sum(A(:,end))
ans = 34

◆ ‘:’ used to specify range of numbers
endstart

incr

‘0’ to ‘pi’ with incr.
of ‘pi/4’

First k elements of
the jth column in A

last colShort-cut for “all rows”

9pykc – 19 Jan 2024 A brief tutorial on Matlab

Expressions & built-in functions

» rho = (1+sqrt(5))/2
rho = 1.6180

» a = abs(3+4i)
a = 5

» z = sqrt(besselk(4/3,rho-i))
z = 0.3730+ 0.3214i

» huge = exp(log(realmax))
huge = 1.7977e+308

» toobig = pi*huge
toobig = Inf

◆ pi 3.14159265

◆ I or j Imaginary unit, -1

◆ eps FP relative precision, 2-52

◆ realmin Smallest FP number, 2-1022

◆ realmax Largest FP number, (2-)21023

◆ Inf Infinity

◆ NaN Not-a-number

Elementary functions

Complex number

Special functions

Built-in constants (function)

10pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (6) - Method 2: Generation

» Z = zeros(2,4)
Z = 0 0 0 0

0 0 0 0

» F = 5*ones(3,3)
F = 5 5 5

5 5 5
5 5 5

» N = fix(10*rand(1,10))
N = 4 9 4 4 8 ...

» R = randn(4,4)
R = 1.0668 0.2944 0.6918 -1.4410

0.0593 -1.3362 0.8580 0.5711
-0.0956 0.7143 1.2540 -0.3999
-0.8323 1.6236 -1.5937 0.6900

Useful Generation Functions

◆ zeros All zeros

◆ ones All ones

◆ rand Uniformly distributed random
elements between (0.0, 1.0)

◆ randn Normally distributed random

elements, mean = 0.0, var = 1.0

11pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (7) - Method 3 & 4:
Load & M-File

16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0

magik.dat

A = [...
16.0 3.0 2.0 13.0
5.0 10.0 11.0 8.0
9.0 6.0 7.0 12.0
4.0 15.0 14.0 1.0];

magik.m

Three dots (…) means
continuation to next line

» magik

.m files can be run
by just typing its
name in Matlab

» load magik.dat

Read data from file
into variable magik

12pykc – 19 Jan 2024 A brief tutorial on Matlab

Entering Matrices (8) - Concatenate & delete

» B = [A A+32; A+48 A+16]
B =

16 3 2 3 48 35 34 45
5 10 11 8 37 42 43 40
9 6 7 12 41 38 39 44
4 15 14 1 36 47 46 33

64 51 50 61 32 19 18 29
53 58 59 56 21 26 27 24
57 54 55 60 25 22 23 28
52 63 62 49 20 31 30 17

» X = A;
» X(:,2) = []
X =

16 2 13
5 11 8
9 7 12
4 14 1

2nd column deleted

13pykc – 19 Jan 2024 A brief tutorial on Matlab

Command Window

◆ é ctrl-p Recall previous line
◆ ê ctrl-n Recall next line
◆ ç ctrl-b Move back one character
◆ è ctrl-f Move forward one character
◆ ctrl - è ctrl-r Move right one word
◆ ctrl - ç ctrl-l Move left one word
◆ home ctrl-a Move to beginning of line
◆ end ctrl-e Move to end of line
◆ esc ctrl-u Clear line
◆ del ctrl-d Delete character at cursor
◆ backspace ctrl-h Delete character before cursor
◆ ctrl-k Delete to end of line

14pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Graphics(1) - Creating a Plot

» t = 0:pi/100:2*pi;
» y = sin(t);
» plot(t,y)
» grid
» axis([0 2*pi -1 1])
» xlabel('0 \leq \itangle \leq \pi')
» ylabel('sin(t)')
» title('Graph of the sine function')
» text(1,-1/3,'\it{Demonstration of plotting}')

15pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Graphics(2) - Mesh & surface plots

» [X,Y] = meshgrid(-8:.5:8);
» R = sqrt(X.^2 + Y.^2) + eps;
» Z = sin(R)./R;
» mesh(X,Y,Z)
» text(15,10,'sin(r)/r')
» title('Demo of 2-D plot');

16pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Graphics(3) - Subplots

» t = 0:pi/10:2*pi;
» [X,Y,Z] = cylinder(4*cos(t));
» subplot(2,2,1); mesh(X)
» subplot(2,2,2); mesh(Y)
» subplot(2,2,3); mesh(Z)
» subplot(2,2,4); mesh(X,Y,Z)

17pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Graphics(3) - Subplots

◆ Matlab official method: generate encapsulated postscript files -
» print -depsc2 mesh.eps

◆ My method:-
❖ Use <PrintScreen> key (top right corner) to capture the plot on screen
❖ Use MS Photo Editor or similar bit-map editing program to cut out the the plot

that I want
❖ Paste it into MS Word or MS PowerPoint or save it as .BMP/.GIF file
❖ Resize as necessary
❖ Fit as many as required on page
❖ Type written description (or report) if needed
❖ Print document to any printer (not necessarily postscript printer)

18pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Help and Online Tutorial

» helpwin

Double click on
matlab\lang

Click here for
HTML based help

19pykc – 19 Jan 2024 A brief tutorial on Matlab

Web-based MATLAB Help & Documentation

20pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Environment (1)

◆ Managing Commands and Functions
❖ addpath Add directories to MATLAB's search path

❖ help Online help for MATLAB functions and M-files
❖ path Control MATLAB's directory search path

◆ Managing Variables and the Workspace

❖ clear Remove items from memory

❖ length Length of vector

❖ load Retrieve variables from disk

❖ save Save workspace variables on disk
❖ size Array dimensions
❖ who, whos List directory of variables in memory

21pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Environment (2)

◆ Working with Files and the Operating Environment
❖ cd Change working directory

❖ delete Delete files and graphics objects
❖ diary Save session in a disk file

❖ dir Directory listing

❖ edit Edit an M-file

❖ ! Execute operating system command

../ref/cd.html
../ref/diary.html
../ref/specialcharacters.html

22pykc – 19 Jan 2024 A brief tutorial on Matlab

Control flow in Matlab

◆ MATLAB has five flow control constructs:
• if statements

• switch statements
• for loops

• while loops

• break statements

◆ if statement
if A > B

'greater'
elseif A < B

'less'
elseif A == B

'equal'
else

error('Unexpected situation')
end

>, < and == work with
scalars, but NOT

matrices

23pykc – 19 Jan 2024 A brief tutorial on Matlab

Matrix Comparison - Beware!

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

A

B

» A=magic(4)

» B = A’

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 1
1 0 1 0
1 0 0 0
0 1 1 0

0 1 1 0
0 0 0 1
0 1 0 1
1 0 0 0

C=A>B

C=(A==B)

C=A<B

1 = true

0 = true

24pykc – 19 Jan 2024 A brief tutorial on Matlab

Built-in Logic functions for matrices

◆ Several functions are helpful for reducing the results of matrix
comparisons to scalar conditions for use with if, including
❖ isequal(A,B) returns ‘1’ if A and B are identical, else return ‘0’
❖ isempty(A) returns ‘1’ if A is a null matrix, else return ‘0’
❖ all(A) returns ‘1’ if all elements A is non-zero
❖ any(A) returns ‘1’ if any element A is non-zero

if isequal(A,B)
'equal'

else
'not equal'

end

25pykc – 19 Jan 2024 A brief tutorial on Matlab

Control Flow - Switch & Case

◆ Assume method exists as a string variable:
switch lower(method)

case {'linear','bilinear'}
disp('Method is linear')

case 'cubic’
disp('Method is cubic')

case 'nearest’
disp('Method is nearest')

otherwise
disp('Unknown method.')

end

Use otherwise to
catch all other cases

26pykc – 19 Jan 2024 A brief tutorial on Matlab

Control Flow - For Loop

n = 4;

a = zeros(n,n) % Preallocate matrix
for i = 1:n

for j = 1:n
H(i,j) = 1/(i+j);

end
end

This makes it faster
and use less memory

27pykc – 19 Jan 2024 A brief tutorial on Matlab

“Life is too short to spend writing for-loops”

◆ Create a table of logarithms:
x = 0;
for k = 1:1001

y(k) = log10(x);
x = x + .01;

end

◆ A vectorized version of the same
code is
x = 0:.01:10;
y = log10(x);

28pykc – 19 Jan 2024 A brief tutorial on Matlab

Matrix versus Array Operations

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

A

341 285 261 269
261 301 309 285
285 309 301 261
269 261 285 341

256 9 4 169
25 100 121 64
81 36 49 144
16 225 196 1

A * A

A .* A

Inner product matrix multiply

Element-by-element array multiply

29pykc – 19 Jan 2024 A brief tutorial on Matlab

Matrix Operators

+
Addition or unary plus. A+B adds A and B. A and B must have the
same size, unless one is a scalar. A scalar can be added to a matrix of
any size.

-
Subtraction or unary minus. A-B subtracts B from A. A and B must
have the same size, unless one is a scalar. A scalar can be subtracted
from a matrix of any size.

*
Matrix multiplication. C = A*B is the linear algebraic product of the
matrices A and B.
For nonscalar A and B, the number of columns of A must equal the
number of rows of B. A scalar can multiply a matrix of any size.

/ Slash or matrix right division. B/A is roughly the same as B*inv(A).
More precisely, B/A = (A'\B')'. See \.

\
Backslash or matrix left division.
If A is an n-by-n matrix and B is a column vector with n components,
or a matrix with several such columns, then X = A\B is the solution to
the equation AX = B .

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is an
integer, the power is computed by repeated multiplication.

' Matrix transpose. A' is the linear algebraic transpose of A. For
complex matrices, this is the complex conjugate transpose.

30pykc – 19 Jan 2024 A brief tutorial on Matlab

Array Operators

+ Element-by-element addition or unary plus.
- Element-by-element subtraction or unary minus.

.*
Array multiplication. A.*B is the element-by-element
product of the arrays A and B. A and B must have the same
size, unless one of them is a scalar.

./
Array right division. A./B is the matrix with elements
A(i,j)/B(i,j). A and B must have the same size, unless
one of them is a scalar.

.\
Array left division. A.\B is the matrix with elements
B(i,j)/A(i,j). A and B must have the same size, unless
one of them is a scalar.

.^
Array power. A.^B is the matrix with elements A(i,j) to the
B(i,j) power. A and B must have the same size, unless one
of them is a scalar.

.' Array transpose. A.' is the array transpose of A. For
complex matrices, this does not involve conjugation.

31pykc – 19 Jan 2024 A brief tutorial on Matlab

M-files: Scripts and Functions

◆ There are two kinds of M-files:
• Scripts, which do not accept input arguments or return output arguments.

They operate on data in the workspace.

• Functions, which can accept input arguments and return output
arguments. Internal variables are local to the function.

% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32

r(n) = rank(magic(n));
end
r
bar(r)

Script magic_rank.m

32pykc – 19 Jan 2024 A brief tutorial on Matlab

Functions

function r = myfunct (x)
% Calculate the function:
% r = x^3 - 2*x - 5
% x can be a vector

r = x.^3 - x.*2 -5;

Define function name and argumentsReturn variable

% on column 1 is a comment

» X = 0:0.05:3;
» y = myfunct (x);
» plot(x,y)

function myfunct.m

This is how plot on p.2-7 was obtained

33pykc – 19 Jan 2024 A brief tutorial on Matlab

Scopes of variables

◆ All variables used inside a function are local to that function
◆ Parameters are passed in and out of the function explicitly as

defined by the first line of the function
◆ You can use the keyword global to make a variable visible

everywhere
◆ As a good programming practice, only use global variables

when it is absolutely required

34pykc – 19 Jan 2024 A brief tutorial on Matlab

MATLAB Programming Style Guide (1)

◆ This Style Guideline is originally prepared by Mike Cook

❖ The first line of code in script m-files should be indicate the name of
the file.

❖ The first line of function m-files has a mandatory structure. The first
line of a function is a declaration line. It has the word function in it to
identifies the file as a function, rather than a generic m-file. For
example, for a function named abs_error.m, the the first line would
be:
function [X,Y] = abs_error(A,B)

❖ A block of comments should be placed at the top of the regular m-
files, and just after the function definition in function m-files. This is
the header comment block. The formats are different for m-files and
functions.

35pykc – 19 Jan 2024 A brief tutorial on Matlab

Style Guide (2)

◆ Variables should have meaningful names. This will make your code
easier to read, and will reduce the number of comments you will need.
However here are some pitfalls about choosing variable names:

• Meaningful variable names are good, but when the variable name
gets to 15 characters or more, it tends to obscure rather than improve
code.

• The maximum length of a variable name is 19 characters and all
variables must start with a character (not number).

• Be careful of naming a variable that will conflict with matlab's built-in
functions, or reserved names: if, while, end, pi, sin, cos, etc.

• Avoid names that differ only in case, look similar, or differ only slightly
from each other.

◆ Make good use of white space, both horizontally and vertically, it will
improve the readability of your program greatly.

36pykc – 19 Jan 2024 A brief tutorial on Matlab

Style Guide (3)

◆ Comments describing tricky parts of the code, assumptions, or design
decisions should be placed above the part of the code you are
attempting to document.

◆ Do not add comment statements to explain things that are obvious.
◆ Try to avoid big blocks of comments except in the detailed description of

the m-file in the header block.

◆ Indenting. Lines of code and comments inside branching (if block) or
repeating (for and while loop) logic structures will be indented 3 spaces.
NOTE: don't use tabs, use spaces. For example:

for i=1:n
disp('in loop')
if data(i) < x

disp('less than x')
else

disp('greater than or equal to x')
end
count = count + 1;

end

37pykc – 19 Jan 2024 A brief tutorial on Matlab

Style Guide (4)

◆ Be careful what numbers you "hardwire" into your program. You may
want to assign a constant number to a variable. If you need to change the
value of the constant before you re-run the program, you can change the
number in one place, rather than searching throughout your program.

% This program "hardwires" the constant 100
% in three places in the code.

for i = 1:100
data = r(i);

end
temp = data/100;
meanTemp = sum(temp)/100;

% This program assigns the constant value to
% the variable, n.

n = 100; % number of data points.

for i = 1:n
data = r(i);

end
temp = data/n;
meanTemp = sum(temp)/n;

Bad!

Good

38pykc – 19 Jan 2024 A brief tutorial on Matlab

Style Guide (5)

◆ No more than one executable statement per line in your regular or
function m-files.

◆ No line of code should exceed 80 characters. (There may be a few times
when this is not possible, but they are rare).

◆ The comment lines of the function m-file are the printed to the screen
when help is requested on that function.

function bias = bias_error(X,Y)
% Purpose: Calculate the bias between input arrays X and Y
% Input: X, Y, must be the same length
% Output: bias = bias of X and Y
%
% filename: bias_error.m
% Mary Jordan, 3/10/96
%
bias = sum(X-Y)/length(X);

39pykc – 19 Jan 2024 A brief tutorial on Matlab

Style Guide (6) - Another good example

function [out1,out2] = humps(x)
%
% Y = HUMPS(X) is a function with strong maxima near x = .3
% and x = .9.
%
% [X,Y] = HUMPS(X) also returns X. With no input arguments,
% HUMPS uses X = 0:.05:1.
%
% Copyright (c) 1984-97 by The MathWorks, Inc.
% $Revision: 5.3 $ $Date: 1997/04/08 05:34:37 $

if nargin==0, x = 0:.05:1; end

y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6;

if nargout==2,
out1 = x; out2 = y;

else
out1 = y;

end

